skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Baoxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Elastocapillary rolling transfer weaves soft materials to spatial structures for programmable robotic applications. 
    more » « less
  2. Abstract Evaporation of droplets composed of insoluble materials provides a low‐cost and facile route for assembling materials and structures in a wide spectrum of functionalities down to the nanoscale and also serves as a basis for innovating ink‐solution‐based future manufacturing technologies. This review summarizes the fundamental mechanics theories of material assembly by droplet drying both on solid and liquid substrates and in a fully suspended air environment. The evolution of assembly patterns, material deformation, and liquid flow during droplet drying and its response to external stimuli ranging from solution surfactant and pH value, surface geometric pattern and wettability, drying temperature, pressure environment, to electrical field have been highlighted to elucidate the coupling mechanisms between solid materials and liquid solutions and the manipulation strategies for material assembly through an either active or passive means. The recent progresses in ink‐based printing technologies with selected examples are also presented to illustrate the immediate applications of droplet drying, with a focus on printing electronic sensors and biomedical devices. The remaining challenges and emerging opportunities are discussed. 
    more » « less
  3. Abstract Direct transfer of pre-patterned device-grade nano-to-microscale materials highly benefits many existing and potential, high performance, heterogeneously integrated functional systems over conventional lithography-based microfabrication. We present, in combined theory and experiment, a self-delamination-driven pattern transfer of a single crystalline silicon thin membrane via well-controlled interfacial design in liquid media. This pattern transfer allows the usage of an intermediate or mediator substrate where both front and back sides of a thin membrane are capable of being integrated with standard lithographical processing, thereby achieving deterministic assembly of the thin membrane into a multi-functional system. Implementations of these capabilities are demonstrated in broad variety of applications ranging from electronics to microelectromechanical systems, wetting and filtration, and metamaterials. 
    more » « less